

Segmented SXT Mirror for Constellation-X

R. Petre

The Segmented SXT team

W. Zhang, K-.W. Chan, D. Content, C. Odell, T. Saha, Y. Soong, P. Serlemitsos, J. Stewart (GSFC)

M.Schattenburg, C. Chen, O. Mongrard, G. Monnelly (MIT)

L. Cohen, R. Rasche, H. Bergner, W. Davis (SAO)

S. O'Dell, D. Goodman, W. Jones (MSFC)

R. Harms (RJH Scientific)

Outline

- Technology demonstration plan
- Process development progress
- Infrastructure development progress
- Issues

Technology Development Plan

- Need to completely rethink mirror design
 Segment length, reflector thickness, mass
- Modular design accommodates progressive buildup
- Develop processes using Astro-E scale (20 cm diameter)
- Engineering model using 50 cm mandrel (inner flight module)
 Demonstrate and refine mounting and alignment approaches
 Ready for X-ray tests in early 2003
- Prototype is progressive build of 3 modules (1 inner, 2 outer)
 Demonstrate use of largest and first segmented mandrels
 Demonstrate module alignment
 First 10 m focal length system
- Build up industrial partnerships and lay groundwork for flight development

SXT Strawman Design

Engineering Unit

Prototype Unit

Flight Scale Assembly of

- 3 modules (2 outer and 1 inner)
- Largest diameter same as for flight -1.6 m
- Each module has 3 to 9 reflector pairs
- Demonstrates module to module alignment

Reflectors **Flight Unit**

Full flight Assembly

Housing

- 1.6 m outer diameter
- 18 Small Modules
- 70 to 170 reflector diameters

- First modules to be aligned using etched silicon microcombs

Hyperbolic (H) submodules

Single inner module with

- 0.5 m dia. reflector pair

(replicated from Zeiss

precision mandrel)

- Parabolic (P) and

Process Development

- Producing conical reflectors with azimuthally constant figure
- Angular resolution limited by mandrel quality (using Astro-E mandrels)
- Replication off metal mandrels is problematic (even when passivated)
- Have developed SiO₂ coating process for metal mandrels
 Makes possible use of cylindrically symmetric mandrels for some reflectors
 Allows for parallel mandrel manufacture
- Now have cylindrical and conical secondary mandrel with <10" figure
- Segment cutting process has been refined
- Wolter mandrels are being fabricated
- Beryllium shown to be viable alternative substrate material
- Optical design and analysis code development continues
- Metrology approach being defined for every process step

X-ray measurements of conical glass reflector pairs

Fixture for X-ray and visible light tests of reflector pairs. Reflectors are held at 4 points. Fixture has multiple degrees of freedom;

X-ray measurement of fully-illuminated reflector pair yields HPD of 30". Reflectors were replicated using cylindrical Astro-E mandrels. Sources of error include mounting scheme and mandrel figure errors. Error shown to be dominated by mandrel quality

Infrastructure Development

- Geared toward 50 cm replication off Zeiss mandrel and EM
- Large oven has been delivered and assembled
- Portable replication device has been invented and demonstrated
- Feasibility of replicating off Zeiss mandrels studied using Be segments
- Initial glass replication within a month

Issues

Limits of substrate

Length

Figure

Ability to cut accurately

Thickness

Alignment combs

Degree to which imperfect reflectors can be brought into alignment

Design trades

Number of mandrels - can we produce more than one radius reflector?

Do we need to vary the substrate thickness with radius?